189 research outputs found

    Partition MCMC for inference on acyclic digraphs

    Full text link
    Acyclic digraphs are the underlying representation of Bayesian networks, a widely used class of probabilistic graphical models. Learning the underlying graph from data is a way of gaining insights about the structural properties of a domain. Structure learning forms one of the inference challenges of statistical graphical models. MCMC methods, notably structure MCMC, to sample graphs from the posterior distribution given the data are probably the only viable option for Bayesian model averaging. Score modularity and restrictions on the number of parents of each node allow the graphs to be grouped into larger collections, which can be scored as a whole to improve the chain's convergence. Current examples of algorithms taking advantage of grouping are the biased order MCMC, which acts on the alternative space of permuted triangular matrices, and non ergodic edge reversal moves. Here we propose a novel algorithm, which employs the underlying combinatorial structure of DAGs to define a new grouping. As a result convergence is improved compared to structure MCMC, while still retaining the property of producing an unbiased sample. Finally the method can be combined with edge reversal moves to improve the sampler further.Comment: Revised version. 34 pages, 16 figures. R code available at https://github.com/annlia/partitionMCM

    The semiclassical relation between open trajectories and periodic orbits for the Wigner time delay

    Full text link
    The Wigner time delay of a classically chaotic quantum system can be expressed semiclassically either in terms of pairs of scattering trajectories that enter and leave the system or in terms of the periodic orbits trapped inside the system. We show how these two pictures are related on the semiclassical level. We start from the semiclassical formula with the scattering trajectories and derive from it all terms in the periodic orbit formula for the time delay. The main ingredient in this calculation is a new type of correlation between scattering trajectories which is due to trajectories that approach the trapped periodic orbits closely. The equivalence between the two pictures is also demonstrated by considering correlation functions of the time delay. A corresponding calculation for the conductance gives no periodic orbit contributions in leading order.Comment: 21 pages, 5 figure

    Sequential Monte Carlo EM for multivariate probit models

    Full text link
    Multivariate probit models (MPM) have the appealing feature of capturing some of the dependence structure between the components of multidimensional binary responses. The key for the dependence modelling is the covariance matrix of an underlying latent multivariate Gaussian. Most approaches to MLE in multivariate probit regression rely on MCEM algorithms to avoid computationally intensive evaluations of multivariate normal orthant probabilities. As an alternative to the much used Gibbs sampler a new SMC sampler for truncated multivariate normals is proposed. The algorithm proceeds in two stages where samples are first drawn from truncated multivariate Student tt distributions and then further evolved towards a Gaussian. The sampler is then embedded in a MCEM algorithm. The sequential nature of SMC methods can be exploited to design a fully sequential version of the EM, where the samples are simply updated from one iteration to the next rather than resampled from scratch. Recycling the samples in this manner significantly reduces the computational cost. An alternative view of the standard conditional maximisation step provides the basis for an iterative procedure to fully perform the maximisation needed in the EM algorithm. The identifiability of MPM is also thoroughly discussed. In particular, the likelihood invariance can be embedded in the EM algorithm to ensure that constrained and unconstrained maximisation are equivalent. A simple iterative procedure is then derived for either maximisation which takes effectively no computational time. The method is validated by applying it to the widely analysed Six Cities dataset and on a higher dimensional simulated example. Previous approaches to the Six Cities overly restrict the parameter space but, by considering the correct invariance, the maximum likelihood is quite naturally improved when treating the full unrestricted model.Comment: 26 pages, 2 figures. In press, Computational Statistics & Data Analysi

    Moments of the Wigner delay times

    Full text link
    The Wigner time delay is a measure of the time spent by a particle inside the scattering region of an open system. For chaotic systems, the statistics of the individual delay times (whose average is the Wigner time delay) are thought to be well described by random matrix theory. Here we present a semiclassical derivation showing the validity of random matrix results. In order to simplify the semiclassical treatment, we express the moments of the delay times in terms of correlation functions of scattering matrices at different energies. In the semiclassical approximation, the elements of the scattering matrix are given in terms of the classical scattering trajectories, requiring one to study correlations between sets of such trajectories. We describe the structure of correlated sets of trajectories and formulate the rules for their evaluation to the leading order in inverse channel number. This allows us to derive a polynomial equation satisfied by the generating function of the moments. Along with showing the agreement of our semiclassical results with the moments predicted by random matrix theory, we infer that the scattering matrix is unitary to all orders in the semiclassical approximation.Comment: Refereed version. 18 pages, 5 figure

    Quantum graphs whose spectra mimic the zeros of the Riemann zeta function

    Get PDF
    One of the most famous problems in mathematics is the Riemann hypothesis: that the non-trivial zeros of the Riemann zeta function lie on a line in the complex plane. One way to prove the hypothesis would be to identify the zeros as eigenvalues of a Hermitian operator, many of whose properties can be derived through the analogy to quantum chaos. Using this, we construct a set of quantum graphs that have the same oscillating part of the density of states as the Riemann zeros, offering an explanation of the overall minus sign. The smooth part is completely different, and hence also the spectrum, but the graphs pick out the low-lying zeros.Comment: 8 pages, 8 pdf figure

    Semiclassics for chaotic systems with tunnel barriers

    Full text link
    The addition of tunnel barriers to open chaotic systems, as well as representing more general physical systems, leads to much richer semiclassical dynamics. In particular, we present here a complete semiclassical treatment for these systems, in the regime where Ehrenfest time effects are negligible and for times shorter than the Heisenberg time. To start we explore the trajectory structures which contribute to the survival probability, and find results that are also in agreement with random matrix theory. Then we progress to the treatment of the probability current density and are able to show, using recursion relation arguments, that the continuity equation connecting the current density to the survival probability is satisfied to all orders in the semiclassical approximation. Following on, we also consider a correlation function of the scattering matrix, for which we have to treat a new set of possible trajectory diagrams. By simplifying the contributions of these diagrams, we show that the results obtained here are consistent with known properties of the scattering matrix. The correlation function can be trivially connected to the ac and dc conductances, quantities of particular interest for which finally we present a semiclassical expansion.Comment: Refereed version. 26 pages, 3 figures in 6 part

    Transport moments beyond the leading order

    Get PDF
    For chaotic cavities with scattering leads attached, transport properties can be approximated in terms of the classical trajectories which enter and exit the system. With a semiclassical treatment involving fine correlations between such trajectories we develop a diagrammatic technique to calculate the moments of various transport quantities. Namely, we find the moments of the transmission and reflection eigenvalues for systems with and without time reversal symmetry. We also derive related quantities involving an energy dependence: the moments of the Wigner delay times and the density of states of chaotic Andreev billiards, where we find that the gap in the density persists when subleading corrections are included. Finally, we show how to adapt our techniques to non-linear statistics by calculating the correlation between transport moments. In each setting, the answer for the nn-th moment is obtained for arbitrary nn (in the form of a moment generating function) and for up to the three leading orders in terms of the inverse channel number. Our results suggest patterns which should hold for further corrections and by matching with the low order moments available from random matrix theory we derive likely higher order generating functions.Comment: Refereed version. 43 pages, 10 figure

    The Variance of Causal Effect Estimators for Binary V-structures

    Full text link
    Adjusting for covariates is a well established method to estimate the total causal effect of an exposure variable on an outcome of interest. Depending on the causal structure of the mechanism under study there may be different adjustment sets, equally valid from a theoretical perspective, leading to identical causal effects. However, in practice, with finite data, estimators built on different sets may display different precision. To investigate the extent of this variability we consider the simplest non-trivial non-linear model of a v-structure on three nodes for binary data. We explicitly compute and compare the variance of the two possible different causal estimators. Further, by going beyond leading order asymptotics we show that there are parameter regimes where the set with the asymptotically optimal variance does depend on the edge coefficients, a result which is not captured by the recent leading order developments for general causal models.Comment: 14 pages, 2 figure

    Multiparticle correlations in mesoscopic scattering: boson sampling, birthday paradox, and Hong-Ou-Mandel profiles

    Get PDF
    The interplay between single-particle interference and quantum indistinguishability leads to signature correlations in many-body scattering. We uncover these with a semiclassical calculation of the transmission probabilities through mesoscopic cavities for systems of non-interacting particles. For chaotic cavities we provide the universal form of the first two moments of the transmission probabilities over ensembles of random unitary matrices, including weak localization and dephasing effects. If the incoming many-body state consists of two macroscopically occupied wavepackets, their time delay drives a quantum-classical transition along a boundary determined by the bosonic birthday paradox. Mesoscopic chaotic scattering of Bose-Einstein condensates is then a realistic candidate to build a boson sampler and to observe the macroscopic Hong-Ou-Mandel effect.Comment: 6+11 pages, 3+3 figure
    • …
    corecore